Medium-size cyclophanes, 681. Synthesis and bromination of 1,2-dimethyl[2.3]metacyclophan-1-enes

Takehiko Yamato*, Tohru Hironaka, Mikiko Shiino, Tatsunori Saisyo and Shinpei Miyamoto
Department of Applied Chemistry, Faculty of Science and Engineering, Saga University, Honjo-machi 1, Saga 840-8502 Japan

McMurry cyclisation of 1,3-bis(3-acetyl-5-tert-butyl-2-methoxyphenyl)propane (4) afforded anti- and syn-1,2-dimethyl[2.3]metacyclophan-1-enes 5, which were converted to the corresponding 1,2-bisbromomethyl[2.3]meta-cyclophan-1-enes (8) by treatment with excess BTMA Br_{3}.

Keywords: cyclophanes, [2.3]metacyclophan-1-enes, McMurry reaction, conformation, strained molecules

For many years various research groups have been attracted by the chemistry and spectral properties of the [2.2]MCP1 -enes (MCP = metacyclophane) skeleton. ${ }^{2,3}$ Many attempts have been made directly to introduce functional groups into the bridged double bonds of [2.2]MCP-1-enes, but these have failed because of the deviation of the benzyl carbon atom from the plane of the benzene ring as well as the novel transannular reaction arising from the electronic interaction between two benzene rings, the proximity of the 8,16 positions and the release of the considerable strain energy to form the more stable annulene π-electron system, $10 \mathrm{~b}, 10 \mathrm{c}$ dihydropyrene. ${ }^{4,5}$ Thus, there is substantial interest in the developing a convenient preparation of 1,2-disubstituted [2.n]MCP-1-enes.
On the other hand, in cyclophane chemistry, the reductive coupling of carbonyl compounds by low-valent titanium, the McMurry reaction, has been used before by Mitchell et al. ${ }^{6}$ to synthesise cyclophanes with glycol units as bridges, by Tanner and Wennerström, ${ }^{7}$ and recently by Hopf et al. ${ }^{8}$ and Grützmacher et al. ${ }^{9}$ for a cyclisation of suitable dialdehydes to yield unsaturated cyclophanes. We report here on a convenient preparation of syn- and anti-1,2-dimethyl[2.3]MCP-1-enes 5 by McMurry reaction ${ }^{10,11}$ and conversion to 1,2 -disubstituted [2.3]MCP-1-enes.

Results and discussion

The starting compound 1,3-bis(5-tert-butyl-2-methoxylphenyl) propane (1) has been prepared according our previous paper by using the tert-butyl group as a positional protective
group on the aromatic ring. ${ }^{12}$ In contrast, the $\mathrm{TiCl}_{4}{ }^{-}$ catalysed formylation of compound 1 with dichloromethyl methyl ether at $20^{\circ} \mathrm{C}$ for 2 h led to complete two-fold regioselective formylation at the meta positions of the 1,3diphenylpropane affording the desired 1,3-bis(5-tert-butyl-3-formyl-2-methoxylphenyl)propane $\mathbf{2}$ in 81% yield. The bisformylated compound $\mathbf{2}$ was converted to the bisalcohol derivative $\mathbf{3}$ in 90% yield by the Grignard reaction of $\mathbf{2}$ with MeMgI in ether. Oxidation of $\mathbf{3}$ with PCC afforded bisacetyl derivative 4 in 63% yield.

1,3-Bis(3-acetyl-5-tert-butyl-2-methoxylphenyl)propane (4) was subjected to reductive coupling by the McMurry reaction following the improved Grützmacher's procedure ${ }^{9}$ (Scheme 2). Thus, the reductive coupling reaction of $\mathbf{4}$ carried out using $\mathrm{TiCl}_{4}-\mathrm{Zn}$ in refluxing THF under the high dilution conditions afforded the desired compound anti- (anti-5) and syn-5,14-di-tert-butyl-8,17-dimethoxy-1,2-dimethyl[2.3]MCP-1-ene (syn5) in 17 and 13% yields, respectively.

The structures of $\mathbf{5}$ were elucidated based on their elemental analyses and spectral data. Especially, the mass spectral data for $5\left(\mathrm{M}^{+}=420\right)$ strongly supports the cyclic structure. The structures anti- $\mathbf{5}$ and syn- $\mathbf{5}$ were readily apparent from their ${ }^{1} \mathrm{H}$ NMR spectra. Thus, the internal methoxy protons show an upfield shift due to the ring current of the opposite benzene ring. ${ }^{2,13}$ The ${ }^{1} \mathrm{H}$ NMR spectrum of conformer anti-5 and syn- $\mathbf{5}$ respectively shows the methoxy protons at $\delta 3.16$ and 3.67 ppm . The aromatic protons of conformer syn-5 are observed much higher field ($\delta 6.17,6.55 \mathrm{ppm}$) than those of conformer anti-5 at $\delta 6.88$ and 6.91 ppm . The above data show

Scheme 1

[^0]

Scheme 2
that the structure of anti-5 is the anti-conformer, whereas the structure of syn-5 is the syn-conformer. And in both anti- $\mathbf{5}$ and syn- 5 the double bond stereochemistry adopts Z-geometry.
Bromination of anti-5,14-di-tert-butyl-8,17-dimethoxy-1,2-dimethyl[2.3]MCP-1-ene (anti-5) with 1 equiy. ${ }_{4}$ of benzyltrimethylammonium tribromide (BTMA $\left.\quad \mathrm{Br}_{3}\right)^{14}$ in dichloromethane solution at room temperature for 5 min afforded a mixture of the corresponding 1,2-dimethylene [2.3]MCP (anti-7) and 1,2-bis(bromomethyl)[2.3]MCP (anti8) in 30% yield ($7: 3$ ratio determined by ${ }^{1} \mathrm{H}$ NMR in CDCl_{3}) along with a recovery of the starting compound. The former transformation probably occurred by addition of bromine to the double bond followed by the two-fold dehydrobromination to diene anti-7. In fact, the same treatment of anti-5 at $-10^{\circ} \mathrm{C}$ afforded a trace amount of diene anti-7 along with a recovery of the starting compound. No formation of the adducts to the bridging double bond was observed. This result is quite different from the bromination of the corresponding anti-5,14-di-tert-butyl-8,17-dimethoxy[2.3]MCP-1-ene which afforded the cis-addition product to the bridging double bond. ${ }^{15}$ Although the detailed mechanism of formation of 1,2-dimethylene[2.3]MCP (anti-7) is not clear in the present stage, one might assume the reaction pathway as shown in Scheme 4 like the bromination of octamethylcyclopentene to afford 1,2-dimethylene-3,3,4,4,5,5-hexamethylcyclopentene by a bromination elimination sequence. ${ }^{16}$ It seems to assume that the initial formation of the bromonium ion \mathbf{A} might
take place in accordance with the behaviour of the sterically hindered alkenes. ${ }^{17}$ Successive deprotonation yields the tertiary allylic bromide \mathbf{B}, from which the HBr elimination may yield diene anti-7. The compound anti-5 was treated with 4 equiv. of BTMA Br_{3} at room temperature for 12 h afforded 1,2-bis(bromomethyl)[2.3]MCP-1-ene (anti-8) in 90\% yield. It was also found that the bromination of 1,2-dimethylene[2.3]MCP (anti-7) with an equimolar of BTMA Br_{3} at room temperature for 5 min . afforded 1,2-bis(bromomethyl)[2.3]MCP-1-ene (anti-8) in quantitative yield. This result strongly suggests that the 1,2-dimethylene[2.3]MCP (anti-7) could be an intermediate of formation of 1,2 - bis(bromomethyl)[2.3]MCP-1-ene (anti-8) in the bromination of 1,2-dimethyl[2.3]MCP (anti-5). In contrast, compound syn-5 was treated with an equimolar amount of BTMA Br_{3} under the same conditions above afforded intractable mixtures of products. No formation of bromine adducts to the double bond and the corresponding diene (syn-7) was detected under the conditions used.

The $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of anti- $\mathbf{8}$ showed a singlet of the methoxy protons at $\delta 3.22 \mathrm{ppm}$ in addition to the resonances at $\delta 6.99$ and $7.19 \mathrm{ppm}(J=2.4 \mathrm{~Hz})$ for the two protons of the aromatic rings. The methylene protons of the bromomethyl group were observed as a doublet at $\delta 4.69$ and $4.81 \mathrm{ppm}(J=10.5 \mathrm{~Hz})$, which is not imerged even at $130^{\circ} \mathrm{C}$ in CDBr_{3}. Thus, the introduction of bromo group to methyl group at the ethenobridge might inhibit the rotation around the single bond of $\mathrm{C}-\mathrm{CH}_{2} \mathrm{Br}$, which makes the methylene protons diasterotopic enviroment.

Treatment of 1,2-bis(bromomethyl)[2.3]MCP-1-ene (anti8) with silver acetate in acetic acid at $80^{\circ} \mathrm{C}$ for 12 h afforded the corresponding acetate (anti-9) in 90% yield. Compound anti-9 was further converted to 1,2-bis(hydroxymethyl) derivative (anti-10) in quantitative yield. An attempted oxidation of the diol anti-10 to the dialdehyde (anti-11) with Swern oxidation ${ }^{18}$ carried out in a dichloromethane solution according to the reported procedure failed. Only the cleavage reaction product, the diacetyl compound 4 , was obtained in a quantitative yield. This finding seems to support the strained nature of the diol anti-10.

Conclusions

We have demonstrated a convenient preparation of syn- and anti-1,2-dimethyl[2.3]MCP-1-enes 5 by McMurry reaction

Scheme 3

Scheme 4
of 1,3-bis(3-acetyl-5-tert-butyl-2-methoxyphenyl)propane (4). Bromination of anti-1,2-dimethyl[2.3]MCP-1-ene with BTMA Br_{3} afforded 1,2-dimethylene- [2.3]MCP and 1,2-[bis(bromo methyl)[2.3]MCP depending on the amount of bromination reagent. Also, 1,2 -bis(bromomethyl) derivative is converted to the corresponding 1,2-disubstituted [2.3]MCP-1-enes. Further studies on the chemical properties of 1,2-dimethylene[2. $n] \mathrm{MCPs}$ and $1,2-[\operatorname{bis}($ bromomethyl $)[2 . n] \mathrm{MCPs}$ are now in progress.

Experimental

${ }^{1} \mathrm{H}$ NMR spectra were recorded at 300 MHz on a Nippon Denshi JEOL FT-300 NMR spectrometer in deuteriochloroform with $\mathrm{Me}_{4} \mathrm{Si}$ as an internal reference. IR spectra were measured as KBr pellets on a Nippon Denshi JIR-AQ2OM spectrometer. Mass spectra were obtained on a Nippon Denshi JMS-01SA-2 spectrometer at 75 eV using a direct-inlet system.

Materials
Preparation of 1,3-bis(5-tert-butyl-2-methoxylphenyl)propane (1) was previously described. ${ }^{12}$

Preparation of 1,3-bis(5-tert-butyl-3-formyl-2-methoxyphenyl) propane (2): To a solution of 1,3-bis(5-tert-butyl-2-methoxylphenyl) propane (1) ${ }^{12}(3.19 \mathrm{~g}, 9.0 \mathrm{mmol})$ and $\mathrm{Cl}_{2} \mathrm{CHOCH}_{3}\left(2.28 \mathrm{~cm}^{3}, 25.2\right.$ mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3}\right)$ was added a solution of $\mathrm{TiCl}_{4}\left(6.0 \mathrm{~cm}^{3}\right.$, $54.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. After the reaction mixture was stirred at room temp. for 2 h , it was poured into a large amount of ice/water ($200 \mathrm{~cm}^{3}$) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(100 \mathrm{~cm}^{3} \times 2\right)$. The combined extracts were washed with water, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was chromatographed over silica gel (Wako C-300, 200 g) with CHCl_{3} as eluent to give crude 1,3-bis(5-tert-butyl-3-formyl-2-methoxyphenyl)propane (2) $(3.09 \mathrm{~g}, 81 \%)$ as colourless oil; $v_{\text {max }}(\mathrm{NaCl}) / \mathrm{cm}^{-1} 1688(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.32(18 \mathrm{H}$, $\mathrm{s}, t \mathrm{Bu}), 1.94-2.04\left(2 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}\right), 2.73-2.79(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}\right), 3.84(6 \mathrm{H}, \mathrm{s}, \mathrm{O} M e), 7.50(2 \mathrm{H}, \mathrm{d}, J=2.6$, $\mathrm{Ar}-$ $H), 7.72(2 \mathrm{H}, \mathrm{d}, J=2.6, \mathrm{Ar}-H), 10.35(2 \mathrm{H}, \mathrm{s}, \mathrm{CHO}) ; m / z 424\left(\mathrm{M}^{+}\right)$ (Found C, 76.60; H, 8.63. $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{O}_{4}(424.57)$ requires C, 76.38; H, $8.55 \%)$.

Preparation of 1,3-bis[5-tert-butyl-3-(1-hydroxyethyl)-2-methoxylphenyl]propane (3): To a solution of methylmagnesium bromide [prepared from methyl iodide ($14.4 \mathrm{~g}, 101 \mathrm{mmol}$) and magnesium ($2.05 \mathrm{~g}, 84.3 \mathrm{mmol}$)] in $\mathrm{Et}_{2} \mathrm{O}\left(45 \mathrm{~cm}^{3}\right)$ was added a solution of 2 $(8.85 \mathrm{~g}, 20.9 \mathrm{mmol})$ in tetrahydrofuran ($100 \mathrm{~cm}^{3}$) dropwise under the conditions of gentle refluxing. After the reaction mixture was refluxed for an additional 12 h , it was quenched with 10%

Scheme 5
ammonium chloride $\left(100 \mathrm{~cm}^{3}\right)$ and extracted with $\mathrm{Et}_{2} \mathrm{O}\left(100 \mathrm{~cm}^{3} \times 3\right)$. The extract was washed with water $\left(100 \mathrm{~cm}^{3} \times 2\right)$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was recrystallised from hexane to afford 1,3-bis[5-tert-butyl-3-(1-hydroxyethyl)-2methoxyphenyl]propane (3) ($8.57 \mathrm{~g}, 90 \%$) as pale yellow oil; $v_{\text {max }}$ $(\mathrm{NaCl}) / \mathrm{cm}^{-1} 3418,2924,2856,1480,1463,1363,1204,1033,1011$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.30(18 \mathrm{H}, \mathrm{s}, t \mathrm{Bu}), 1.50(6 \mathrm{H}, \mathrm{d}, J=6.4, \mathrm{CH}(\mathrm{OH}) M e)$, 1.97-2.01 ($\left.2 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}\right), 2.68(2 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 2.71-2.73$ $\left(4 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}\right), 3.71(6 \mathrm{H}, \mathrm{s}), 5.17(2 \mathrm{H}, \mathrm{q}, J=6.4 \mathrm{~Hz}$, $\mathrm{CH}(\mathrm{OH}) \mathrm{Me}), 7.15(2 \mathrm{H}, \mathrm{d}, J=2.2, \mathrm{Ar}-H), 7.30(2 \mathrm{H}, \mathrm{d}, J=2.2, \mathrm{Ar}-H)$; $\mathrm{m} / \mathrm{z}: 456\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right)$ (Found C, 76.23; H, 9.90. $\mathrm{C}_{29} \mathrm{H}_{44} \mathrm{O}_{4}$ (456.67) requires $\mathrm{C}, 76.27 ; \mathrm{H}, 9.72 \%$).
Preparation of 1,3-bis(3-acetyl-5-tert-butyl-2-methoxylphenyl) propane (4): To a solution of $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+} \mathrm{CrO}_{3} \mathrm{Cl}^{-}(31.0 \mathrm{~g}, 144 \mathrm{mmol})$ in acetone ($300 \mathrm{~cm}^{3}$) was added a solution of 1,3-bis[5-tert-butyl-3-(1-hydroxyethyl)-2-methylphenyl]propane (3) ($10.62 \mathrm{~g}, 23.3 \mathrm{mmol}$) in acetone ($100 \mathrm{~cm}^{3}$) dropwise at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature for 12 h . The reaction mixture was filtered and the filtrate was concentrated. The residue was subjected to silica-gel (Wako, C-300; 500 g) column chromatography using as eluent CHCl_{3} to afford 1,3-bis(3-acetyl-5-tert-butyl-2-methoxyphenyl)propane (4) $(6.64 \mathrm{~g}, 63 \%)$ as a pale yellow oil; $v_{\max }(\mathrm{NaCl}) / \mathrm{cm}^{-1}: 2944,1696$ $(\mathrm{C}=\mathrm{O}), 1465,1358,1229,1115,1008,890,809 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right): 1.31$ $(18 \mathrm{H}, \mathrm{s}, t \mathrm{Bu}), 1.93-2.03\left(2 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}\right), 2.64(6 \mathrm{H}, \mathrm{s}$, COMe), 2.72-2.77 (4H, m, $\left.\mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}\right), 3.71(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $7.37(2 \mathrm{H}, \mathrm{d}, J=2.4, \operatorname{Ar}-H), 7.44(2 \mathrm{H}, \mathrm{d}, J=2.4, \operatorname{Ar}-H) ; m / z: 452$ $\left(\mathrm{M}^{+}\right)$(Found $\mathrm{C}, 76.73 ; \mathrm{H}, 8.70 . \mathrm{C}_{29} \mathrm{H}_{40} \mathrm{O}_{4}(452.63)$ requires $\mathrm{C}, 76.95$; H, 8.91%).
McMurry coupling reaction of 4: The McMurry reagent was prepared from $\mathrm{TiCl}_{4}\left(13.75 \mathrm{~cm}^{3}, 125 \mathrm{mmol}\right)$ and Zn powder ($18 \mathrm{~g}, 275 \mathrm{mmol}$) in dry THF ($500 \mathrm{~cm}^{3}$), under nitrogen. A solution of 1,3-bis(3-acetyl-5-tert-butyl-2-methoxylphenyl)propane (4) $(3.4 \mathrm{~g}, 7.5 \mathrm{mmol})$ and pyridine $\left(22.8 \mathrm{~cm}^{3}, 0.2 \mathrm{~mol}\right)$ in dry THF $\left(250 \mathrm{~cm}^{3}\right)$ was added within 60 h to the black mixture of the McMurry reagent by using a high-dilution technique with continuous refluxing and stirring. The reaction mixture was refluxed for additional 8 h , cooled to room temperature, and hydrised with aqueous $10 \% \mathrm{~K}_{2} \mathrm{CO}_{3}\left(200 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. The reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(200 \mathrm{~cm}^{3} \times 3\right)$. The combined extracts were washed with water, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was chromatographed over silica gel (Wako C-300, 300 g) with hexane:benzene, 1:1 and benzene as eluents to give anti5 and syn-5 as a colourless solid. Each eluents were recrystallised from hexane to afford anti-5 (537mg, 17\%) and syn-5 (411 mg, 13%), respectively.
anti-5,14-Di-tert-butyl-8,17-dimethoxy-1,2-dimethyl[2.3] metacyclophan-1-ene (anti-5) was obtained as colourless prisms (hexane); m.p. $170-171^{\circ} \mathrm{C} ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2951,1475,1256$, $1240,1116,1030,896 ; \delta H\left(\mathrm{CDCl}_{3}\right) 1.31(18 \mathrm{H}, \mathrm{s}, t \mathrm{Bu}), 1.78-1.89$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}\right), 2.24(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.21-2.30(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{ArCH} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}\right), 2.49-2.60\left(2 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}\right), 3.16(6 \mathrm{H}$, $\mathrm{s}, \mathrm{OMe}), 6.88(2 \mathrm{H}, \mathrm{d}, J=2.4, \mathrm{Ar}-H), 6.91(2 \mathrm{H}, \mathrm{d}, J=2.4, \mathrm{Ar}-H)$; $\delta_{C}\left(\mathrm{CDCl}_{3}\right) 19.1,22.2,23.6,31.6,33.9,59.0,122.3,125.4,129.1$, $130.5,131.9,143.3,155.5 ; m / z 420\left(\mathrm{M}^{+}\right)$(Found C, 82.53; H, 9.61. $\mathrm{C}_{29} \mathrm{H}_{40} \mathrm{O}_{2}(420.64)$ requires $\left.\mathrm{C}, 82.81 ; \mathrm{H}, 9.59 \%\right)$.
syn-5,14-Di-tert-butyl-8,17-dimethoxy-1,2-dimethyl[2.3] metacyclophan-1-ene (syn-5) was obtained as colourless prisms (hexane); m.p. $142-143^{\circ} \mathrm{C} ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2950$, 1475, 1359, $1214,1120,1025,859 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.10(18 \mathrm{H}, \mathrm{s}, t \mathrm{Bu}), 2.14-2.20$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}$), $2.24-2.28\left(1 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}\right)$, $2.25(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.44-2.50\left(2 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}\right), 3.05-3.15$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{ArCH} 2 \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}\right), 3.67$ ($6 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 6.17 ($2 \mathrm{H}, \mathrm{d}, J=2.4$, $\mathrm{Ar}-H), 6.55(2 \mathrm{H}, \mathrm{d}, J=2.4, \mathrm{Ar}-H) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 19.6,28.9,31.4,33.6$, $60.6,77.2,123.5,123.9,130.7,132.4,133.3,141.6,156.9 ; \mathrm{m} / \mathrm{z} 420$ $\left(\mathrm{M}^{+}\right)$(Found C, 82.63; H, 9.65. $\mathrm{C}_{29} \mathrm{H}_{40} \mathrm{O}_{2}$ (420.64) requires C, 82.81; H, 9.59%).

Bromination of anti-5,14-di-tert-butyl-8,17-dimethoxy-1,2-dimethyl [2.3]metacyclophan-1-ene (anti-5) with BTMA Br_{3} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature: A solution of anti-5 $(185 \mathrm{mg}, 0.44 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(24 \mathrm{~cm}^{3}\right)$ was added BTMA $\mathrm{Br}_{3}(170.3 \mathrm{mg}, 0.44 \mathrm{mmol})$ at room temperature. After the reaction mixture was stirred for 5 min , it was poured into water $\left(20 \mathrm{~cm}^{3}\right)$. The organic layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}, 2\right.$ times $)$. The extract was washed with 10% aqueous sodium thiosulfate $\left(10 \mathrm{~cm}^{3}\right)$ and water $\left(10 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue was column chromatographed over silica gel with hexane and hexane:benzene, $1: 1$ as eluents to give a mixture of anti-7 and anti-8 [$42 \mathrm{mg}, 30 \%$, (7:3 ratio determined by ${ }^{1} \mathrm{H}$ NMR in $\left.\mathrm{CDCl}_{3}\right)$] and anti-5 ($130 \mathrm{mg}, 70 \%$) as colourless solid, respectively. Recrystallisation of the former eluents from hexane gave anti-5,14-di-
tert-butyl-8,17-dimethoxy-1,2-dimethylene[2.3]metacyclophan-1ene (anti-7) as colourless prisms (hexane); 148-149 ${ }^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{KBr}) /$ $\mathrm{cm}^{-1} 2959,1472,1258,1096,1019,871,809,702 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.31$ $(18 \mathrm{H}, \mathrm{s}, \mathrm{tBu}), 1.90-1.97\left(2 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}\right), 2.31-2.37(2 \mathrm{H}$, m, $\left.\mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}\right)$, 2.53-2.59 ($\left.2 \mathrm{H}, \mathrm{m}, \mathrm{ArCH} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}\right), 3.11$ $(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 5.14\left(2 \mathrm{H}, \mathrm{d}, J=1.8,=\mathrm{CH}_{2}\right), 5.72(2 \mathrm{H}, \mathrm{d}, J=1.8$, $\left.=\mathrm{CH}_{2}\right), 6.94(2 \mathrm{H}, \mathrm{d}, J=2.4, \mathrm{Ar}-\mathrm{H}), 7.02(2 \mathrm{H}, \mathrm{d}, J=2.4, \mathrm{Ar}-\mathrm{H}) ; \mathrm{m} / \mathrm{z}$ $418\left(\mathrm{M}^{+}\right)$(Found C, 82.36; H, 9.61. $\mathrm{C}_{29} \mathrm{H}_{38} \mathrm{O}_{2}$ (418.61) requires C, 83.21; H, 9.15\%).

Similarly, bromination of anti-5 with 4 equiv. of BTMA Br_{3} was carried out at room temperature for 12 h to afford anti-1,2-bis(bromomethyl)-5,14-di-tert-butyl-8,17-dimethoxy[2.3] metacyclo-phan-1-ene (anti-8) in 90% yield as colourless prisms (hexane); $161-162{ }^{\circ} \mathrm{C} ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 2959, 1461, 1255, 1100, 1048, $1015,860,809 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.32(18 \mathrm{H}, \mathrm{s} t \mathrm{Bu}), 1.78-1.88(2 \mathrm{H}, \mathrm{m}$, $\mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}$), 2.25-2.34 (2 $\left.\mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}\right), 2.44-2.56$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}\right), 3.22(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.69(2 \mathrm{H}, \mathrm{d}, J=10.5$, $\left.\mathrm{CH}_{2} \mathrm{Br}\right), 4.81\left(2 \mathrm{H}, \mathrm{d}, J=10.5, \mathrm{CH}_{2} \mathrm{Br}\right), 6.99(2 \mathrm{H}, \mathrm{d}, J=2.4, \mathrm{Ar}-H)$, $7.19(2 \mathrm{H}, \mathrm{d}, J=2.4, \mathrm{Ar}-H) ; m / z 576,578,580\left(\mathrm{M}^{+}\right)$(Found C, 82.36; $\mathrm{H}, 9.61 . \mathrm{C}_{29} \mathrm{H}_{38} \mathrm{O}_{2} \mathrm{Br}_{2}$ (578.43) requires $\mathrm{C}, 60.22 ; \mathrm{H}, 6.62 \%$).

Preparation of anti-5,14-di-tert-butyl-8,17-dimethoxy-1,2-bis (acetoxymethyl)[2.3]metacyclophan-1-ene (anti-9): A solution of anti- $8(60 \mathrm{mg}, 0.104 \mathrm{mmol})$ in glacial acetic acid $\left(4 \mathrm{~cm}^{3}\right)$ containing silver acetate ($519 \mathrm{mg}, 3.11 \mathrm{mmol}$) was heated at $80^{\circ} \mathrm{C}$ for 12 h . The resulting suspension was concentrated and then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3} \times 3\right)$. The combined extracts were washed with a 10% aqueous NaHCO_{3} solution ($10 \mathrm{~cm}^{3} \times 2$), water $\left(10 \mathrm{~cm}^{3} \times 2\right)$, and brine $\left(10 \mathrm{~cm}^{3}\right)$, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was chromatographed over silica gel (Wako C-300, 300 g) with hexane: $\mathrm{CHCl}_{3}, 1: 1$ as eluents to give anti-9 as a colourless solid. Recrystallisation from methanol gave anti-1,2-bis(acetoxymethyl) 5,14-di-tert-butyl-8,17-dimethoxy-[2.3]metacyclophan-1-ene (anti-9) ($50 \mathrm{mg}, 90 \%$) as colourless prisms, m.p. $127-128^{\circ} \mathrm{C} ; v_{\max }$ $(\mathrm{KBr}) / \mathrm{cm}^{-1} 1740(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}(\mathrm{CDCl} 3) 1.17(18 \mathrm{H}, \mathrm{s}, t \mathrm{Bu}), 1.61-1.72$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}\right), 1.87(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.10-2.23(2 \mathrm{H}, \mathrm{m}$, $\mathrm{ArCH} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}$), 2.31-2.43 (2H, m, ArCH2 $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}$), 3.04 (6 H , $\mathrm{s}, \mathrm{OMe}), 5.12\left(2 \mathrm{H}, \mathrm{d}, J=12.6, \mathrm{CH}_{2} \mathrm{OAc}\right), 5.19(2 \mathrm{H}, \mathrm{d}, J=12.6$, $\left.\mathrm{CH}_{2} \mathrm{OAc}\right), 6.83(2 \mathrm{H}, \mathrm{d}, J=2.4, \mathrm{Ar}-H) 6.92(2 \mathrm{H}, \mathrm{d}, J=2.4, \mathrm{Ar}-H)$; $\mathrm{m} / z 536\left(\mathrm{M}^{+}\right)$(Found: C, 73.71; H, 8.42. $\mathrm{C}_{33} \mathrm{H}_{44} \mathrm{O}_{6}$ requires C , 73.85; H, 8.26%).

Preparation of anti-5,14-di-tert-butyl-1,2-bis(hydroxymethyl)-8,17-dimethoxy-[2.3]metacyclophan-1-ene (anti-10): To a solution of anti-9 $(29 \mathrm{mg}, 0.047 \mathrm{mmol})$ in $\mathrm{EtOH}\left(2.5 \mathrm{~cm}^{3}\right)$ was added a solution of $\mathrm{KOH}(50 \mathrm{mg}, 0.891 \mathrm{mmol})$ in water $\left(0.2 \mathrm{~cm}^{3}\right)$ at room temperature. After the reaction mixture had been heated at $50^{\circ} \mathrm{C}$ for 30 min , it was condensed under reduced pressure, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($10 \mathrm{~cm}^{3} \times 3$). After the dichloromethane solution had been washed successively with water, the extract was dried over anhydrous sodium sulfate and concentrated to afford anti-10 (21 mg, 98\%) as a colourless solid. Recrystallisation from methanol gave anti-5,14-di-tert-butyl-8,17-dimethoxy-1,2-bis(hydroxymethyl)[2.3]meta-cyclophan-1-ene (anti-10) as colourless prisms, m.p. $143-144{ }^{\circ} \mathrm{C} v_{\text {max }}$ $(\mathrm{KBr}) / \mathrm{cm}^{-1} 3240(\mathrm{OH}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.32(18 \mathrm{H}, \mathrm{s}, t \mathrm{Bu}), 1.81-1.92$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}\right), 2.26-2.37\left(2 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}\right)$, 2.43-2.55 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}$), $3.22(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.81(2 \mathrm{H}$, $\left.\mathrm{d}, J=12.6, \mathrm{CH}_{2} \mathrm{OH}\right), 4.87\left(2 \mathrm{H}, \mathrm{d}, J=12.6, \mathrm{CH}_{2} \mathrm{OH}\right), 6.96(2 \mathrm{H}$, $J=2.4, \operatorname{Ar}-H), 7.04(2 \mathrm{H}, \mathrm{d}, J=2.4, \mathrm{Ar}-H) ; m / z 452\left(\mathrm{M}^{+}\right)$(Found: C, $76.81 ; \mathrm{H}, 8.82 . \mathrm{C}_{29} \mathrm{H}_{40} \mathrm{O}_{4}$ requires C, $76.95 ; \mathrm{H}, 8.91 \%$).

Received 18 May 2005; accepted 30 July 2005
 Paper 05/3255

References

1 Medium-sized Cyclophanes. part 67: K. Tanaka, A. Miyazawa, A. Hiate, M. Tashiro, T. Saisyo, R. Okabe, K. Kohno and T. Yamato, J. Chem. Res., 2005, 495.

2 (a) Cyclophanes (Eds.: P.M. Keehn and S.M. Rosenfield), Academic Press: New York, 1983, vol. 1\&2; (b) F. Vögtle, Cyclophane-Chemistry, Wiley: Chichester, 1993.
3 (a) H. Blaschke, C.E. Ramey, I. Calder and V. Boekelheide, J. Am. Chem. Soc., 1970, 92, 3675; (b) C.E. Ramey and V. Boekelheide, J. Am. Chem. Soc., 1972, 94, 3512; (c) Mitchell, T.K. Vinod and G.W. Bushnell, J. Am. Chem. Soc., 1985, 107, 3340.

4 (a) M. Tashiro and T. Yamato, J. Am. Chem. Soc., 1982, 104, 3701; (b) M. Tashiro, T. Yamato and K. Kobayashi, J. Org. Chem., 1984, 49, 4724; (c) T. Yamato, K. Kobayashi and M. Tashiro, J. Org. Chem., 1986, 51, 2214; (d) T. Yamato, J. Matsumoto, S. Ide, K. Suehiro and M. Tashiro, Chem. Ber., 1993, 126, 447.

5 (a) V. Boekelheide and T. Miyasaka, J. Am. Chem. Soc., 1967, 89, 1709; (b) V. Boekelheide and E. Sturm, J. Am. Chem. Soc., 1969, 91, 902.
6 R.H. Mitchell and S.A. Weerawana, Tetrahedron Lett., 1986, 27, 453.
7. D. Tanner and O. Wennerström, Acta Chem. Scand., 1983, Ser. B 37, 693.
8. H. Hopf and C. Mlynek, J. Org. Chem., 1990, 55, 1361.
9. H.-F. Grützmacher and E. Neumann, Chem. Ber., 1993, 126, 1495.

10 (a) J.E. McMurry, M.P. Fleming, K.L. Kees and L.R. Krepski, J. Org. Chem., 1978, 43, 3255; (b) J.E. McMurry, Acc. Chem. Res., 1983, 16, 405; (c) J.E. McMurry, G.J. Haley, J.R. Matz, J.C. Clardy and G.V. Duyne, J. Am. Chem. Soc., 1984, 106, 5018; (d) J.E. McMurry, Chem. Rev., 1989, 89, 1513.

11 (a) T. Yamato, K. Fujita, K. Futatsuki and H. Tsuzuki, Can. J. Chem., 2000, 78, 1089; (b) T. Yamato, K. Fujita, T. Abe and H. Tsuzuki, New J. Chem., 2001, 25, 728; (c) T. Yamato, K. Fujita and H. Tsuzuki, J. Chem. Soc. Perkin Trans. 1, 2001, 2089; (d) T. Yamato, S. Miyamoto, T. Hironaka and Y. Miura, Org. Lett., 2005, 7, 3.

12 (a) T. Yamato, J. Matsumoto, K. Tokuhisa, K. Suehiro and M. Tashiro, Chem. Ber. 1992, 125, 2443; (b) T. Yamato, K. Fujita, K. Okuyama and H. Tsuzuki, New. J. Chem., 2000, 221.

13 (a) M. Tashiro and T. Yamato, J. Org. Chem., 1981, 46, 4556; (b) M. Tashiro and T. Yamato, J. Org. Chem., 1983, 48, 1461.

14 S. Kajigaeshi, T. Kakinami, H. Tokiyama, T. Hirakawa and T. Okamoto, Chem. Lett., 1987, 627.

15 (a) T. Yamato, M. Sato, K. Noda, J. Matsumoto and M. Tashiro, Chem. Ber., 1993, 126, 447; (b) T. Yamato, J. Matsumoto, S. Ide, K. Suehiro and M. Tashiro, J. Chem. Res. (S), 1993, 394.

16 (a) H. Klein and H. Mayr, Angew. Chem., 1981, 93, 1069; Angew. Chem. Int. Ed. Engl., 1981, 20, 1027; (b) H. Mayr, E. Will, U.W. Heigl and C. Schade, Tetrahedron Lett., 1986, 42, 2519.

17 (a) D. Lenoir, Chem. Ber., 1978, 111, 411; (b) H. Mayr and U.W. Heigl, Angew. Chem., 1985, 97, 568; Angew. Chem. Int. Ed. Engl., 1985, 24, 579.
18 A.J. Mancuso, S.L. Huang and D. Swern, J. Org. Chem., 1978, 43, 2480.

[^0]: * Correspondent. E-mail: yamatot@cc.saga-u.ac.jp

